Ordinary Differential Equations: Toolbox Math 383 - Gracie Conte

FIRST ORDER EQUATIONS

• Separation of Variables

- 1. Isolate y's on once side and x's on the other
- 2. Integrate and solve as needed

• Integration Factor (Linear)

- 1. Given: y' + P(x)y = Q(x)
- 2. Let $\mu = e^{\int^x P(t) dt}$
- 3. Multiply by μ : $\mu y' + \mu P(x)y = \mu Q(x)$
- 4. Undo product rule
- 5. Integrate and solve as needed

• Exact

- 1. Given: M(x, y) dx + N(x, y) dy = 0
- 2. Check exactness: $M_y \stackrel{?}{=} N_x$
 - If equal then they are exact
 - (a) $F(x,y) = \int F_x dx = \int M dx + g(y)$ (or $F(x,y) = \int F_y dy = \int N dy + g(x)$).
 - (b) Find what g(y) is by finding F_y (or find what g(x) is by finding F_x).
 - (c) Plug g(y) (or g(x)) into F(x, y).
 - (d) Your solution is F(x,y) = c where you plug in what you found for F(x,y).

- If not equal then not exact

- (a) Check if $\frac{M_y N_x}{N}$ is a function of **just** x. If it isn't, stop.
- (b) Let $f(x) = \frac{M_y N_x}{N}$
- (c) Let $\mu(x) = e^{\int^x f(t) dt}$
- (d) Multiply by $\mu(x)$: $\mu(x)M(x,y) dx + \mu(x)N(x,y) dy = 0$
- (e) Now $\bar{M} = \mu M$ and $\bar{N} = \mu N$
- (f) Check for exactness using \bar{M} and \bar{N} . (If it isn't exact, something went wrong.)
- (g) Proceed like before in the exact case using \bar{M} and \bar{N} instead of M and N.

• Substitution

- Homogeneous
 - 1. Let $u = \frac{y}{x}$ then y = xu
 - 2. Find $\frac{dy}{dx}$ in terms of u
 - 3. Solve in terms of u then use $u = \frac{y}{x}$ to recover y solution.
- Bernoulli
 - 1. Given: $y' + P(x)y = Q(x)y^n$
 - 2. Let $u=y^{1-n}$ then after a couple steps you get $\frac{1}{1-n}y^n\frac{du}{dx}=\frac{dy}{dx}$
 - 3. Make substitutions then divide by y^n
 - 4. Solve in terms of u then recover y solution using the substitution u = y1 n
- Second Order Reducible
 - * Case 1: No y terms
 - 1. Let $u = \frac{dy}{dx}$
 - 2. Then $\frac{du}{dx} = \frac{d^2y}{dx^2}$
 - 3. Solve in terms of u and x then substitute u = y' back in.
 - 4. Solve new first order equation
 - * Case 2: No x terms
 - 1. Let $u = \frac{dy}{dx}$
 - 2. Then $\frac{d^2y}{dx^2} = \frac{du}{dx} = \frac{du}{dy}\frac{dy}{dx} = \frac{du}{dy}u$
 - 3. Solve in terms of u and x then substitute u = y' back in.
 - 4. Solve new first order equation

Nth ORDER EQUATIONS

- $a_n y^{(n)} + ... + a_1 y' + a_0 y = 0$ (Linear Homogeneous Constant Coefficient)
 - Solve characteristic equation: $a_n r^n + ... + a_1 r + a_0 = 0$
 - * Real roots
 - · Distinct: $r_0 \to e^{r_0 x}$
 - · Repeated with multiplicity $k: r_0 \to e^{r_0 x}, x e^{r_0 x}, ..., x^{k-1} e^{r_0 x}$
 - * Complex roots
 - · Distinct: $t \pm is \rightarrow e^{tx} \cos(sx), e^{tx} \sin(sx)$
 - Repeated with multiplicity $k: t \pm is \rightarrow e^{tx} \cos(sx), xe^{tx} \cos(sx), ..., x^{k-1}e^{tx} \cos(sx)$ $e^{tx} \sin(sx), xe^{tx} \sin(sx), ..., x^{k-1}e^{tx} \sin(sx)$

- ay'' + by' + cy = f(x) (Second Order Linear Non-homogeneous Constant Coefficient)
 - Method of Undetermined Coefficients
 - 1. Find the homogeneous solution y_h
 - 2. Guess particular solution y_p has similar form to f(x) then solve for coefficients. (Multiply by x if your guess has overlap with y_h .)
 - 3. $y = y_p + y_h$
 - Variation of Parameters
 - 1. Find the homogeneous solution y_h
 - 2. Particular solution $y_p = -u_1y_1 + u_2y_2$ where

$$u_1 = \int \frac{y_2 f(x)}{W(y_1, y_2)} dx$$
 $u_2 = \int \frac{y_1 f(x)}{W(y_1, y_2)} dx$

 $3. \ y = y_p + y_h$

SYSTEMS of EQUATIONS

- Find eigenvalues $\lambda_1, ..., \lambda_n$
- Find associated eigenvectors
- If λ_k is real distinct
 - General Solution: $x_k(t) = c_k e^{\lambda_k t} \vec{v}_k$
- If λ_k is **real repeated** (Multiplicity 2)
 - Easy Case: Two rows of zeros
 - * Define two linearly independent vectors \vec{w}_1 and \vec{w}_2
 - * General Solution: $x_k(t) = c_1 e^{\lambda_k t} \vec{w}_1 + c_2 e^{\lambda_k t} \vec{w}_2$
 - Hard Case: One row of zeros
 - * Find the one vector that does work \vec{w}_1
 - * Solve $(A \lambda I)\vec{w}_2 = \vec{w}_1$ for \vec{w}_2
 - * General Solution: $x_k = c_1 e^{\lambda_k t} \vec{w}_1 + c_2 (t e^{\lambda_k t} \vec{w}_1 + e^{\lambda_k t} \vec{w}_2)$
- If λ_k is complex
 - General Solution: $x_k(t) = c_k e^{(a_k + ib_k)tx} \vec{v}_k$
 - Convert using Euler's Formula: $e^{(a_k+ib_k)t} = e^{a_kt}(\cos(b_kt) + i\sin(b_kt))$
 - Multiply result from previous step into vector \vec{v}_k
 - Organize the resulting vector so each entry has the real portion first and imaginary portion second
 - Split this into two vectors so that it has the form $e^{a_k t}(\vec{w_1} + i\vec{w_2})$
 - New General Solution: $x_k(t) = c_1 e^{a_k t} \vec{w}_1 + c_2 e^{a_k t} \vec{w}_2$
- Full general solution is the sum of all the x_k 's found