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My Problem

Find time-periodic solutions to

iut = −uxx − |u|2u

on
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Why it is Interesting

The solutions on the dumbbell have been proven to have solutions that are
spectrally similar to the triple-well problem:

iut = −uxx + V (x)u− |u|2u

Where V (x) is the triple-well potential:
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Why We Think We Will Succeed

My Problem: Want time periodic solutions for an infinite dimensional
Hamiltonian system.

Lyapunov Center Theorem: Time periodic solutions exist for finite
dimensional Hamiltonian systems.

Goodman and Yang: Found near time periodic solutions for NLS on R

Xu: Found time periodic solutions for NLS on a torus
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Goals

Numerically

� Solve the spatial component with machine precision

� Generalize our code so it works on any graph

� Find a time solver that compliments the precision of our spatial solver

Analytically

� Prove time periodic solutions exist on the dumbbell

� Find the neighborhood for the initial conditions of a periodic orbit
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Graphs

• A graph, G, is a pair (V,E) where:

◦ V = set of vertices vj
◦ E = set of edges ej

• A metric graph has the additional condition:

◦ each edge has a length lj ∈ (0,∞)

• A quantum graph is:

◦ a metric graph
◦ has a Schrödinger type operator on each edge

- Schrödinger’s Equation: iut = −uxx + f(u)
↑

Schrödinger type

operator
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Example: Solutions on Graphs
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Vertex Conditions

Possible conditions at a vertex v:

1) Leaf Nodes (Incident to exactly one edge)
• Boundary Condition

◦ Dirichlet: uj(v) = 0
◦ Neumann: u′j(v) = 0
◦ Robin: αjuj(v) + u′j(v) = 0

2) Internal Nodes (Incident to more than one edge)
• Matching Conditions

◦ Continuity Condition: uj(v) = uk(v)

◦ Current Conservation: u′j(v) + u′k(v) = 0

- Kirchoff:
∑dv
j=1 u

′
j(v) = σu1(v)
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Numerically Defining Operators

Goal: Define d
dx numerically

Evaluate f(x) at discrete points: {(xj , fj)}nj=1

Develop an interpolating polynomial: f(x) ≈ p(x) =

n∑
j=1

fj lj(x)

Approximate the derivative: f ′(x) ≈ p′(x) =

n∑
j=1

fj l
′
j(x)

Defining v as vj = p(xj) we can write: v = Df

where Dij = l′j(xi)
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Numerically Defining Operators: Line

Problem: Solve for u when x ∈ [0, `] in:

uxx = f(x), u(0) = a, u(`) = b

Discretized Problem: D2u = f

We know D2 and f so we can solve for u.

But how do we enforce the boundary conditions?
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Numerically Defining Operators: BCs

Popular method: Row Replacement

• Remove top and bottom rows and replace with BC’s

⇒ Linear to quadratic convergence

Better method: Rectangular Collocation

• Project information from n points to n− 2 points

⇒ Spectral convergence - en ∼ ( `n)n

(Driscoll and Hale 2016)
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Rectangular Collocation

1. Start with:
• n discretization points that we are currently evaluating at {xk}nk=1

• n− 2 discretization points we’d like to be working on instead {yk}n−2k=1

2. Create an interpolating polynomial, pn−1(x), for the n points

3. Evaluate that polynomial at new n− 2 discretization points

pn−1(y) = P pn−1(x)
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Rectangular Collocation

1. Start with:
• n discretization points that we are currently evaluating at {xk}nk=1

• n− 2 discretization points we’d like to be working on instead {yk}n−2k=1

2. Create an interpolating polynomial, pn−1(x), for the n points

3. Evaluate that polynomial at new n− 2 discretization points

4. Use vector multiplication to define the n− 2× n Barycentric
Resampling Matrix: P

5. Use P to create rectangular differentiation matrices

PD2 = Projected Second Derivative Matrix
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Numerically Defining Operators: Line

Problem: Solve for u when x ∈ [0, `] in:

uxx = f(x), u(0) = a, u(`) = b

Discretized: D2u = f where D is the discretized version of d
dx

(*Still need to enforce the boundary conditions*)
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Numerically Defining Operators: Line


1 ... 0 PD2


0 ... 1


︸ ︷︷ ︸

L


u1

u2
...

un−1

un


︸ ︷︷ ︸

u

=


a
f2
...

fn−1

b


︸ ︷︷ ︸

f

Now solve Lu = f for u
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Numerically Defining Operators: Graph

Problem: Solve uxx = f(x) when x is in:

{
u1(l1) = u2(l2) = u3(l3) = 0 Boundary Condition
u1(0) = u2(0) = u3(0) Continuity Condition
u′1(0) + u′2(0) + u′3(0) = 0 Current Conservation (Kirchoff Condition)
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Numerically Defining Operators: Graphs

L =




PD2 . . . 0

... PD2
...

0 . . . PD2


[

BC
][

Continuity
][

KC
]


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Numerically Defining Operators: Graphs

The solution to Lu = f when f(x) =

{ −0.30 sinx edge 1
0.15 sinx edge 2
0.15 sinx edge 3

is:
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Convergence of Spatial Operator
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Convergence of Spatial Operator
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Convergence of Spatial Operator
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Spatial Operator’s Eigenfunctions

(a) λ = 0.000 (b) λ = 0.059 (c) λ = 0.430

(d) λ = 1.000 (e) λ = 1.897 (f) λ = 4.000
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Adding the Nonlinear Component

Cubic NLS equation:
iut = −uxx − |u|2u

has stationary state solution:

u(x, t) = eiµtu(x)

where u(x) solves:
u′′(x)− u3(x) = µu(x)
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Solutions for the Static NLS

(a) Ground State: µ = −0.1781 (b) Excited State: µ = −0.1786

Figure: Possible solutions when µ is around −0.178
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Solutions for the Static NLS

(a) Ground State: µ = −0.3370 (b) Excited State: µ = −0.3374

(c) Excited State: µ = −0.3369 (d) Excited State: µ = −0.3273

Figure: Possible solutions when µ is around −0.337
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Bifurcations for the NLS

Bifurcation: A dramatic change in the solution’s behavior when a
parameter makes a small change
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Linearization of the NLS Solution

Normal-mode perturbation:

u(x, t) = eiµt
[
u(x) + f1(x)eλt + f̄2(x)eλ̄t

]
, f1, f2 � 1

Need f1 and f2 to satisfy the Spectral Problem:

JL
[
f1

f2

]
= λ

[
f1

f2

]

where

L =

[
∂xx − µ− 2u2(x) u2(x)

u2(x) ∂xx − µ− 2u2(x)

]
J = −i

[
1 0
0 −1

]
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Spectrum of L

σ(L) = {λ | (L − λI) is singular}

Rephrased: the set of λ’s such that (L − λI)−1 does not exist.

Symmetry of L causes eigenvalues to occur in quadruplets.
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Spectrally Stable Solutions

Our focus:
Re(λ) = 0

Thus eigenvalues occur in λ = ±iω pairs

(a) The eigenvalues move
as µ changes

(b) This could cause two
eigenvalues to coalesce

Figure: Collision of eigenvalues
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Krein Signature

The Krein signature of two eigenvalues before a collision determines their
behavior after.

Kλ = sgn(K(λ))

Where the Krein quantity is:

K(λ) = 〈Lv, v〉 =

(
ω

∫
R

[
|f1(x)|2 − |f2(x)|2

]
dx

)

(a) Opposite (b) Same

Figure: Eigenvalue behavior depending on the Krein signature
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Hamilton-Hopf Bifurcations

Hamilton-Hopf Bifurcations: A bifurcation that occurs when two
eigenvalues with opposite Krein signatures collide on the imaginary axis.

Figure: Conditions for a Hamilton-Hopf bifurcation
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Hamilton-Hopf Bifurcations

Suppose we have a Hamilton-Hopf bifurcation at µ0 > 0 resulting in the
eigenvalue pair λ = ±iω

Then iω is a double discrete eigenvalue of JL0 = JL
∣∣
µ=µ0

with corresponding real eigenfunction: [ψ1, ψ2]T

Thus:

JL0

[
ψ1

ψ2

]
= iω

[
ψ1

ψ2

]

Because of symmetry, −iω has the real eigenfunction: [ψ2, ψ1]T

So:

JL0

[
ψ2

ψ1

]
= −iω

[
ψ2

ψ1

]
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Normal Form Transformation

Normal Form:

• Make a polynomial change of variables to your DE

• Locally improves the nonlinear system

• Lets us more easily recognize the PDE’s dynamics

Analytical goal: Prove periodic solutions exist

Numerical goal: Find the periodic orbit
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Normal Form Transformation: Ansatz

Hamilton-Hopf bifurcation point: µ = µ0

Solution’s perturbation series:

u(x, t) = eiθ
[
u0(x) + εu1(x, t, τ) + ε2u2(x, t, τ) + ...

]
where

θ(t, τ) = µ0t+ ε

∫ τ

0
µ1(s) ds+ ε2

∫ τ

0
µ2(s) ds+ ...

(J. Yang 2016)
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Normal Form Transformation: O(1)

Useful terms:

ut = iθte
iθ
[
u0 + εu1 + ε2u2 + . . .

]
+ eiθ

[
εu1t + ε2u1τ + ε2u2t + ε3u2τ + . . .

]
uxx = eiθ

[
u0xx + εu1xx + ε2u2xx + . . .

]
θt = µ0 + ε2µ1(τ) + ε3µ2(τ) + . . .

The simplified O(1) equation is:

u0xx + |u0|2u0 = µ0u0
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Normal Form Transformation: O(ε)

The simplified O(ε) equation:

(i∂t + ∂xx − µ0 + 2u2
0)u1 + u2

0ū1 = 0

Summarize our information for u1 using the above and its complex
conjugate:

(i∂t + JL0)

[
u1

ū1

]
= 0
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Normal Form Transformation: O(ε)

Recall:

JL0

[
ψ1

ψ2

]
= iω

[
ψ1

ψ2

]

JL0

[
ψ2

ψ1

]
= −iω

[
ψ2

ψ1

]

Thus we can solve

(i∂t + JL0)

[
u1

ū1

]
= 0

Solution:
u1(x, t) = B(τ)ψ1(x)eiωt + B̄(τ)ψ2(x)e−iωt

where B(τ) is a complex envelope function determined by O(ε2).
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Adjoint Continuation Method

Newton scheme that utilizes the normal form as an initial condition to
land us on the periodic orbit by finding fixed points

It requires:
• Initial condition

◦ The normal form: ū0(x) ≈ eiθt
(
u0(x) + εu1(x, 0)

)
• The Jacobian of the objective function

• Explicit information about time
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Adjoint Continuation Method

Initial value problem:

ut = F (u), u(x, 0) = ū0(x)

where F (u) = i(uxx + |u|2u).

To compute nontrivial time periodic solutions, define:

Gtot = G(ū0, T ) +Gpen(ū0, T )

with

G(ū0, T ) =
1

2

∫ 2π

0

(
u(x, T )− ū0(x)

)2
dx

and Gpen(ū0, T ) is a nonnegative penalty function.

(Ambrose & Wilkening 2010)
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Adjoint Continuation Method

Gtot(ū0, T ) = 0 implies u has time period T .

Goal: Numerically minimize Gtot

Need to compute the variational derivative:

Ġ =
d

dε

∣∣∣
ε=0

G(ū0 + ε ˙̄u0, T ) =

∫ 2π

0
(u(x, T )− ū0(x)) (u̇(x, T )− ˙̄u0) dx
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Adjoint Continuation Method

Necessary components to calculate Ġ:

GT =

∫ 2π

0
(u(x, T )− u0(x))(ut(x, T )) dx

Gu0(x) = Q(x, T )−Q(x, 0)

where Q(x, 0) = (u(x, T )− u0(x)) is the auxiliary quantity.

Next we need a time solver to compute G
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Time Evolution

What we need: A solver with enough accuracy to converge to the fixed point of
the objective function

Challenges:

• Finding a time-stepper that matches the accuracy of our spatial solver
• Accounting for encoded boundary conditions in our spatial solver
• Coping with the non-linearity

Possible Schemes:

• 8th Order Runge-Kutta

◦ Very accurate
◦ Hasn’t been adapted to DAEs

• Splitting Scheme

◦ Preserves energy
◦ Lower accuracy
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Time Evolution: Runge-Kutta

Big Idea: A Newton solve on something sensitive

Dormand-Prince 8

• Simultaneously executes two Runge-Kutta schemes

• Incurs minimal computation cost

• Actively selects step-size to minimize truncation error

Once we have this, we’ll be able to numerically find periodic orbits!
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Conclusion

• Developing tools to model Quantum Graphs is essential

• Rectangular Collocation is a superior method for solving PDE’s with
Schrödinger type operators

• The nonlinear component introduces instabilities into the static
problem, but with that, we get the initial conditions to time period
solutions

• Evolving NLS through time comes with two challenges

1. Finding a scheme accurate enough to go with our sensitive spatial data
2. Finding such a scheme that works specifically with DAEs

• Will be ready to find periodic orbit solutions soon!
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Thanks!

Special thanks to

• My advisor, Jeremy Marzuola

• My collaborator at NJIT, Roy Goodman

• And you guys for coming

Questions?
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