Searching for Time Periodic Solutions to the Cubic Non-Linear Schrödinger Equation

Gracie Conte

University of North Carolina, Chapel Hill December 08, 2020 My Problem

Find time-periodic solutions to

$$iu_t = -u_{xx} - |u|^2 u$$

on

The solutions on the dumbbell have been proven to have solutions that are spectrally similar to the triple-well problem:

$$iu_t = -u_{xx} + V(x)u - |u|^2 u$$

Where V(x) is the triple-well potential:

My Problem: Want time periodic solutions for an *infinite* dimensional Hamiltonian system.

Lyapunov Center Theorem: Time periodic solutions exist for *finite* dimensional Hamiltonian systems.

Goodman and Yang: Found near time periodic solutions for NLS on $\mathbb R$

Xu: Found time periodic solutions for NLS on a *torus*

Numerically

- $\hfill\square$ Solve the spatial component with machine precision
 - \Box Generalize our code so it works on *any* graph
- \square Find a time solver that compliments the precision of our spatial solver

Analytically

- \Box Prove time periodic solutions exist on the dumbbell
- $\hfill\square$ Find the neighborhood for the initial conditions of a periodic orbit

Graphs

A graph, G, is a pair (V, E) where:
V = set of vertices v_j
E = set of edges e_j

- A metric graph has the additional condition:
 - \circ each edge has a length $l_j \in (0,\infty)$
- A quantum graph is:
 - $\circ~$ a metric graph
 - $\circ~$ has a Schrödinger type operator on each edge

- Schrödinger's Equation:
$$iu_t = -u_{xx} + f(u)$$

Gracie Conte

Searching for Time Periodic Solutions to the Cubic Non-Linear Schrödinger Equation

Possible conditions at a vertex v:

1) Leaf Nodes (Incident to exactly one edge)

- Boundary Condition
 - \circ Dirichlet: $u_j(v) = 0$
 - Neumann: $u'_j(v) = 0$
 - Robin: $\alpha_j u_j(v) + u'_j(v) = 0$

2) Internal Nodes (Incident to more than one edge)

- Matching Conditions
 - Continuity Condition: $u_j(v) = u_k(v)$
 - $\circ~$ Current Conservation: $u_j'(v)+u_k'(v)=0$
 - Kirchoff: $\sum_{j=1}^{d_v} u_j'(v) = \sigma u_1(v)$

Goal: Define $\frac{d}{dx}$ numerically

Evaluate f(x) at discrete points: $\{(x_j, f_j)\}_{j=1}^n$

Develop an interpolating polynomial: $f(x) \approx p(x) = \sum_{j=1}^{n} f_j l_j(x)$

Approximate the derivative: $f'(x)\approx p'(x)=\sum_{j=1}^n f_j l'_j(x)$

Defining \mathbf{v} as $v_j = p(x_j)$ we can write: $\mathbf{v} = D\mathbf{f}$

where $D_{ij} = l'_j(x_i)$

Problem: Solve for u when $x \in [0, \ell]$ in:

$$u_{xx} = f(x), \quad u(0) = a, \quad u(\ell) = b$$

Discretized Problem: $D^2 \mathbf{u} = \mathbf{f}$

We know D^2 and **f** so we can solve for **u**.

But how do we enforce the boundary conditions?

Popular method: Row Replacement

- Remove top and bottom rows and replace with BC's
 - \Rightarrow Linear to quadratic convergence

Better method: Rectangular Collocation

- Project information from n points to n-2 points
 - \Rightarrow Spectral convergence $e_n \sim (\frac{\ell}{n})^n$

(Driscoll and Hale 2016)

- 1. Start with:
 - *n* discretization points that we are currently evaluating at $\{x_k\}_{k=1}^n$
 - n-2 discretization points we'd like to be working on instead $\{y_k\}_{k=1}^{n-2}$

- 1. Start with:
 - *n* discretization points that we are currently evaluating at $\{x_k\}_{k=1}^n$
 - n-2 discretization points we'd like to be working on instead $\{y_k\}_{k=1}^{n-2}$
- 2. Create an interpolating polynomial, $p_{n-1}(x)$, for the n points

- 1. Start with:
 - *n* discretization points that we are currently evaluating at $\{x_k\}_{k=1}^n$
 - n-2 discretization points we'd like to be working on instead $\{y_k\}_{k=1}^{n-2}$
- 2. Create an interpolating polynomial, $p_{n-1}(x)$, for the n points
- 3. Evaluate that polynomial at new n-2 discretization points

$$p_{n-1}(\boldsymbol{y}) = P p_{n-1}(\boldsymbol{x})$$

- 1. Start with:
 - *n* discretization points that we are currently evaluating at $\{x_k\}_{k=1}^n$
 - n-2 discretization points we'd like to be working on instead $\{y_k\}_{k=1}^{n-2}$
- 2. Create an interpolating polynomial, $p_{n-1}(x)$, for the n points
- 3. Evaluate that polynomial at new n-2 discretization points
- 4. Use vector multiplication to define the $n-2\times n$ Barycentric Resampling Matrix: P

- 1. Start with:
 - *n* discretization points that we are currently evaluating at $\{x_k\}_{k=1}^n$
 - n-2 discretization points we'd like to be working on instead $\{y_k\}_{k=1}^{n-2}$
- 2. Create an interpolating polynomial, $p_{n-1}(x)$, for the n points
- 3. Evaluate that polynomial at new n-2 discretization points
- 4. Use vector multiplication to define the $n-2\times n$ Barycentric Resampling Matrix: P
- 5. Use P to create rectangular differentiation matrices

 $PD^2 =$ Projected Second Derivative Matrix

Problem: Solve for u when $x \in [0, \ell]$ in:

$$u_{xx} = f(x), \quad u(0) = a, \quad u(\ell) = b$$

Discretized: $D^2 \mathbf{u} = \mathbf{f}$ where D is the discretized version of $\frac{d}{dx}$

(*Still need to enforce the boundary conditions*)

Now solve $L\mathbf{u} = \mathbf{f}$ for \mathbf{u}

Problem: Solve $u_{xx} = f(x)$ when x is in:

$$\begin{array}{l} u_1(l_1) = u_2(l_2) = u_3(l_3) = 0 \\ u_1(0) = u_2(0) = u_3(0) \\ u_1'(0) + u_2'(0) + u_3'(0) = 0 \end{array}$$

Boundary Condition Continuity Condition Current Conservation (Kirchoff Condition)

The solution to
$$L\mathbf{u} = \mathbf{f}$$
 when $f(x) = \begin{cases} -0.30 \sin x & \text{edge 1} \\ 0.15 \sin x & \text{edge 2} & \text{is:} \\ 0.15 \sin x & \text{edge 3} \end{cases}$

Spatial Operator's Eigenfunctions

Searching for Time Periodic Solutions to the Cubic Non-Linear Schrödinger Equation

Cubic NLS equation:

$$iu_t = -u_{xx} - |u|^2 u$$

has stationary state solution:

$$u(x,t) = e^{i\mu t}u(x)$$

where u(x) solves:

$$u''(x) - u^3(x) = \mu u(x)$$

Figure: Possible solutions when μ is around -0.178

0.2 -0.2 -0.2 -0.4 -0.4 -0.6 -0.6 -4 ेत (a) Ground State: $\mu = -0.3370$ (b) Excited State: $\mu = -0.3374$ -0.2 -0.2 -0.4 -0.6 -0.8 -0.4 -0.6 4

(C) Excited State: $\mu = -0.3369$ (d) Excited State: $\mu = -0.3273$

Figure: Possible solutions when μ is around -0.337

Solutions for the Static NLS

Searching for Time Periodic Solutions to the Cubic Non-Linear Schrödinger Equation

Bifurcation: A dramatic change in the solution's behavior when a parameter makes a small change

Normal-mode perturbation:

$$u(x,t) = e^{i\mu t} \left[u(x) + f_1(x)e^{\lambda t} + \bar{f}_2(x)e^{\bar{\lambda}t} \right], \qquad f_1, f_2 \ll 1$$

Need f_1 and f_2 to satisfy the Spectral Problem:

$$J\mathcal{L}\begin{bmatrix} f_1\\f_2\end{bmatrix} = \lambda \begin{bmatrix} f_1\\f_2\end{bmatrix}$$

where

$$\mathcal{L} = \begin{bmatrix} \partial_{xx} - \mu - 2u^2(x) & u^2(x) \\ u^2(x) & \partial_{xx} - \mu - 2u^2(x) \end{bmatrix} \qquad J = -i \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

$$\sigma(\mathcal{L}) = \{\lambda \mid (\mathcal{L} - \lambda I) \text{ is singular}\}$$

Rephrased: the set of λ 's such that $(\mathcal{L} - \lambda I)^{-1}$ does not exist.

Symmetry of $\mathcal L$ causes eigenvalues to occur in quadruplets.

Our focus:

$$\mathsf{Re}(\lambda) = 0$$

Thus eigenvalues occur in $\lambda = \pm i\omega$ pairs

Figure: Collision of eigenvalues

The Krein signature of two eigenvalues before a collision determines their behavior after.

$$K_{\lambda} = \operatorname{sgn}(K(\lambda))$$

Where the Krein quantity is:

Figure: Eigenvalue behavior depending on the Krein signature

Hamilton-Hopf Bifurcations: A bifurcation that occurs when two eigenvalues with opposite Krein signatures collide on the imaginary axis.

Figure: Conditions for a Hamilton-Hopf bifurcation

Suppose we have a Hamilton-Hopf bifurcation at $\mu_0>0$ resulting in the eigenvalue pair $\lambda=\pm i\omega$

Then $i\omega$ is a double discrete eigenvalue of $J\mathcal{L}_0 = J\mathcal{L}\big|_{\mu=\mu_0}$

with corresponding real eigenfunction: $[\psi_1,\psi_2]^T$

Thus:

$$J\mathcal{L}_0\begin{bmatrix}\psi_1\\\psi_2\end{bmatrix} = i\omega\begin{bmatrix}\psi_1\\\psi_2\end{bmatrix}$$

Because of symmetry, $-i\omega$ has the real eigenfunction: $[\psi_2, \psi_1]^T$ So:

$$J\mathcal{L}_0\begin{bmatrix}\psi_2\\\psi_1\end{bmatrix} = -i\omega\begin{bmatrix}\psi_2\\\psi_1\end{bmatrix}$$

Normal Form:

- Make a polynomial change of variables to your DE
- Locally improves the nonlinear system
- Lets us more easily recognize the PDE's dynamics

Analytical goal: Prove periodic solutions exist

Numerical goal: Find the periodic orbit

Hamilton-Hopf bifurcation point: $\mu = \mu_0$

Solution's perturbation series:

$$u(x,t) = e^{i\theta} \left[u_0(x) + \varepsilon u_1(x,t,\tau) + \varepsilon^2 u_2(x,t,\tau) + \dots \right]$$

where

$$\theta(t,\tau) = \mu_0 t + \varepsilon \int_0^\tau \mu_1(s) \, ds + \varepsilon^2 \int_0^\tau \mu_2(s) \, ds + \dots$$

(J. Yang 2016)

Normal Form Transformation: $\mathcal{O}(1)$

Useful terms:

$$u_{t} = i\theta_{t}e^{i\theta} \left[u_{0} + \varepsilon u_{1} + \varepsilon^{2}u_{2} + \ldots \right] + e^{i\theta} \left[\varepsilon u_{1t} + \varepsilon^{2}u_{1\tau} + \varepsilon^{2}u_{2t} + \varepsilon^{3}u_{2\tau} + \ldots \right]$$
$$u_{xx} = e^{i\theta} \left[u_{0xx} + \varepsilon u_{1xx} + \varepsilon^{2}u_{2xx} + \ldots \right]$$
$$\theta_{t} = \mu_{0} + \varepsilon^{2}\mu_{1}(\tau) + \varepsilon^{3}\mu_{2}(\tau) + \ldots$$

The simplified $\mathcal{O}(1)$ equation is:

$$u_{0xx} + |u_0|^2 u_0 = \mu_0 u_0$$

The simplified $\mathcal{O}(\varepsilon)$ equation:

$$(i\partial_t + \partial_{xx} - \mu_0 + 2u_0^2)u_1 + u_0^2\bar{u}_1 = 0$$

Summarize our information for u_1 using the above and its complex conjugate:

$$(i\partial_t + J\mathcal{L}_0) \left[\begin{array}{c} u_1 \\ \bar{u}_1 \end{array} \right] = 0$$

Normal Form Transformation: $\mathcal{O}(\varepsilon)$

Recall:

$$J\mathcal{L}_0 \begin{bmatrix} \psi_1 \\ \psi_2 \end{bmatrix} = i\omega \begin{bmatrix} \psi_1 \\ \psi_2 \end{bmatrix}$$
$$J\mathcal{L}_0 \begin{bmatrix} \psi_2 \\ \psi_1 \end{bmatrix} = -i\omega \begin{bmatrix} \psi_2 \\ \psi_1 \end{bmatrix}$$

Thus we can solve

$$(i\partial_t + J\mathcal{L}_0) \left[\begin{array}{c} u_1 \\ \bar{u}_1 \end{array} \right] = 0$$

Solution:

$$u_1(x,t) = B(\tau)\psi_1(x)e^{i\omega t} + \bar{B}(\tau)\psi_2(x)e^{-i\omega t}$$

where $B(\tau)$ is a complex envelope function determined by $\mathcal{O}(\varepsilon^2)$.

Gracie Conte

Searching for Time Periodic Solutions to the Cubic Non-Linear Schrödinger Equation

Newton scheme that utilizes the normal form as an initial condition to land us on the periodic orbit by finding fixed points

It requires:

- Initial condition
 - The normal form: $\bar{u}_0(x) \approx e^{i\theta t} (u_0(x) + \varepsilon u_1(x,0))$
- The Jacobian of the objective function
- Explicit information about time

Initial value problem:

$$u_t = F(u), \qquad u(x,0) = \bar{u}_0(x)$$

where $F(u) = i(u_{xx} + |u|^2 u)$.

To compute nontrivial time periodic solutions, define:

$$G_{\mathsf{tot}} = G(\bar{u}_0, T) + \frac{G_{\mathsf{pen}}(\bar{u}_0, T)}{G_{\mathsf{pen}}(\bar{u}_0, T)}$$

with

$$G(\bar{u}_0, T) = \frac{1}{2} \int_0^{2\pi} \left(u(x, T) - \bar{u}_0(x) \right)^2 dx$$

and $G_{pen}(\bar{u}_0, T)$ is a nonnegative penalty function.

(Ambrose & Wilkening 2010)

 $G_{tot}(\bar{u}_0, T) = 0$ implies u has time period T.

Goal: Numerically minimize G_{tot}

Need to compute the variational derivative:

$$\dot{G} = \frac{d}{d\varepsilon} \Big|_{\varepsilon=0} G(\bar{u}_0 + \varepsilon \dot{\bar{u}}_0, T) = \int_0^{2\pi} (u(x, T) - \bar{u}_0(x)) \left(\dot{u}(x, T) - \dot{\bar{u}}_0 \right) dx$$

Necessary components to calculate \dot{G} :

$$G_T = \int_0^{2\pi} (u(x,T) - u_0(x))(u_t(x,T)) \, dx$$

$$G_{u_0}(x) = Q(x,T) - Q(x,0)$$

where $Q(\boldsymbol{x},0) = (\boldsymbol{u}(\boldsymbol{x},T) - \boldsymbol{u}_0(\boldsymbol{x}))$ is the auxiliary quantity.

Next we need a time solver to compute ${\boldsymbol{G}}$

What we need: A solver with enough accuracy to converge to the fixed point of the objective function

Challenges:

- Finding a time-stepper that matches the accuracy of our spatial solver
- Accounting for encoded boundary conditions in our spatial solver
- Coping with the non-linearity

Possible Schemes:

- 8th Order Runge-Kutta
 - Very accurate
 - $\circ~$ Hasn't been adapted to DAEs
- Splitting Scheme
 - Preserves energy
 - Lower accuracy

Big Idea: A Newton solve on something sensitive

Dormand-Prince 8

- Simultaneously executes two Runge-Kutta schemes
- Incurs minimal computation cost
- · Actively selects step-size to minimize truncation error

Once we have this, we'll be able to numerically find periodic orbits!

- Developing tools to model Quantum Graphs is essential
- Rectangular Collocation is a superior method for solving PDE's with Schrödinger type operators
- The nonlinear component introduces instabilities into the static problem, but with that, we get the initial conditions to time period solutions
- Evolving NLS through time comes with two challenges
 - 1. Finding a scheme accurate enough to go with our sensitive spatial data
 - 2. Finding such a scheme that works specifically with DAEs
- Will be ready to find periodic orbit solutions soon!

Thanks!

Special thanks to

- My advisor, Jeremy Marzuola
- My collaborator at NJIT, Roy Goodman
- And you guys for coming

Questions?